Zusammenfassung.
Positronenemissionstomographische Studien an Probanden zur Wirkung von Propofol, Halothan
und Isofluran haben gezeigt, dass bei Eintritt der Bewusstlosigkeit der Glukosemetabolismus
in der Großhirnrinde um ca. 20 - 50 % reduziert ist. Um die Frage zu klären, ob dieser
Befund auf eine unmittelbare Hemmung neokortikaler Netzwerke zurückgeführt werden
kann, wurden Untersuchungen an isolierten Gehirnschnitten durchgeführt, in denen Nervenzellen
der Großhirnrinde, nicht aber subkortikale Strukturen enthalten waren. Es ergab sich
eine ausgezeichnete Korrelation zwischen den Konzentrationen, die die Feuerraten von
Nervenzellen in Gehirnschnitten auf die Hälfte reduzierten und den Konzentrationen,
die von verschiedenen Autoren im Blut von Patienten beim Aufwachen aus der Narkose
gemessen wurden. Aus bereits veröffentlichten Untersuchungen an Probanden war des
weiteren bekannt, dass Isofluran die Frequenz auditorisch evozierter hochfrequenter
neuronaler Oszillationen in der Großhirnrinde halbiert, wenn eine Konzentration verabreicht
wird, die etwa 50 % des MAK-Wertes beträgt. Vergleichbare quantitative Wirkungen wurden
in Gehirnschnitt-Präparaten beobachtet, in denen hochfrequente Oszillationen neuronaler
Aktivität spontan auftraten. Nicht alle Aspekte der zerebralen Wirkung von Allgemeinanästhetika
lassen sich jedoch durch eine direkte Hemmung kortikaler Nervenzellen erklären. Die
fortschreitende Synchronisation kortikaler Aktivität, die mit zunehmender Narkosetiefe
im EEG sichtbar wird, sowie die Unterdrückung der Amplitude auditorisch evozierter
Potentiale mittlerer Latenz ist wahrscheinlich auf die Hemmung thalamischer Neurone
zurückzuführen. Halothan, Isofluran, Enfluran und Propofol reduzierten die Aktivität
kortikaler Neurone in Gehirnschnitten, indem sie die GABAA-Rezeptor-vermittelte synaptische Inhibition verstärkten. Ein ähnlicher molekularer
Wirkmechanismus trägt wahrscheinlich auch zur Unterdrückung spinaler Schmerzreflexe
bei. Allerdings müssen sich die zerebralen und spinalen Wirkmechanismen von Allgemeinanästhetika
unterscheiden. Bildet man das Verhältnis zwischen den Konzentrationen die Bewusstlosigkeit
induzieren und jenen die Schmerzreflexe unterdrücken, so erhält man für verschiedene
Wirkstoffe deutlich voneinander abweichende Werte.
Neural Mechanisms of Anaesthesia.
Positron emission tomography studies on volunteers showed that, at concentrations
inducing the loss of consciousness, propofol, halothane and isoflurane reduce glucose
metabolism of neocortical neurones by 20 - 50 %. To find out whether these effects
are caused by direct anaesthetic actions on cortical structures, experiments were
carried out on isolated neocortical brain slices. In these investigations an excellent
correlation was observed between anaesthetic concentrations causing a half-maximal
depression of action potential firing in neocortical brain slices and anaesthetic
blood concentrations monitored during awaking from anaesthesia in humans. Furthermore,
it could be shown that, at concentrations approximately one half the MAC-value, isoflurane
decreases the frequency of auditory evoked 30 - 40 Hz oscillations in the neocortex
by 50 %. Similar quantitative effects were observed on spontaneously occurring high
frequency rhythms in neocortical brain slices. However, not all aspects of cerebral
anaesthetic actions can be explained by direct effects on cortical neurones. The EEG
synchronisation and the amplitude reduction of mid latency auditory evoked potentials
are probably related to the inhibition of thalamic neurones. Halothane, isoflurane,
enflurane and propofol reduced action potential firing of cortical neurones by enhancing
GABAA receptor-mediated synaptic inhibition. This molecular mechanism seems also to be
involved in depressing painful stimuli-induced motor responses. Nevertheless, there
must be a difference between relevant anaesthetic mechanisms on the cerebral and spinal
level. This follows from the observation that the relation between the concentration
causing the loss of consciousness and the concentration that depresses movements considerably
varies among different anaesthetic agents.
Schlüsselwörter:
GABAA-Rezeptor - Neokortex - Rückenmark - Allgemeinanästhetika - EEG - Schmerz - Bewusstsein
Key words:
GABAA-receptor - Neocortex - Spinal cord - General anaesthetics - EEG - Pain - Consciousness
Literatur
- 1
Franks N P, Lieb W R.
Molecular and cellular mechanisms of general anaesthesia.
Nature.
1994;
367
607-614
- 2
Urban B W, Friederich P.
Anaesthetic mechanisms in vitro and in general anesthesia.
Toxicol Lett.
1998;
100
9-16
- 3
Kissin I.
A concept for assessing interactions of general anesthetics.
Anesth Analg.
1997;
85
204-210
- 4
Smith C, McEwan A I, Jhaveri R, Wilkinson M, Goodman D, Smith L R, Canada A T, Glass P SA.
The interaction of fentanyl on the Cp50 of propofol for loss of consciousness and skin incision.
Anesthesiology.
1994;
81
820-828
- 5
Antognini J F, Schwarz K.
Exaggerateed anesthetic requirements in the preferentially anesthetized brain.
Anesthesiology.
1993;
79
1244-1249
- 6
Antognini J F, Carstens E, Tabo E, Buzin V.
Effect of differential delivery of isoflurane to head and torso on lumbar dorsal horn
activity.
Anesthesiology.
1998;
88
1055-1061
- 7
Rampil I J, Mason P, Singh H.
Anesthetic potency (MAC) is independent of forebrain structures in the rat.
Anesthesiology.
1993;
78
707-712
- 8 Roth G.
Das Gehirn und seine Wirklichkeit. Kognitive Neurobiologie und ihre philosophischen
Konsequenzen. Frankfurt; Suhrkamp 1996
- 9
Fritschy J-M, Möhler H.
GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular
distribution of seven major subunits.
J Comp Neurol.
1995;
359
154-194
- 10
McKernan R M, Whiting P J.
Which GABAA-receptor subtypes really occur in the brain?.
Trends Neurosci.
1996;
19
139-143
- 11
Bormann J.
The „ABC” of GABA receptors.
Trends Pharmacol Sci.
2000;
21
16-19
- 12
Pearce R A.
Physiological evidence for two distinct GABAA responses in rat hippocampus.
Neuron.
1993;
10
189-200
- 13
Banks M I, Pearce R A.
Kinetic differences between synaptic and extrasynaptic GABAA receptors in CA1 pyramidal cells.
J Neurosci.
2000;
20
937-948
- 14
Banks M I, White J A, Pearce R A.
Interactions between distinct GABAA circuits in hippocampus.
Neuron.
2000;
25
449-457
- 15
Belelli D, Pistis M, Peters J A, Lambert J J.
General anaesthetic action at transmitter-gated inhibitory amino acid receptors.
Trends Pharmacol Sci.
1999;
20
496-502
- 16
Eckenhoff R G, Johansson J S.
On the relevance of “clinically relevant concentrations” of inhaled anesthetics in
in vitro experiments.
Anesthesiology.
1999;
91
856-860
- 17 Speckmann E-J, Elger C E.
Introduction to the neurophysiological basis of the EEG and DC potentials. In: Niedermeyer E, Da Silva FL (eds) Electroencephalography. 3. Edition. Baltimore,
Hong Kong; Williams & Wilkings 1993: 15-26
- 18
Clark D L, Rosner B S.
Neurophysiologic effects on general anesthetics: I. The electroencephalogram and sensory
evoked responses in man.
Anesthesiology.
1973;
38
564-582
- 19
MacIver M B, Mandema J W, Stanski D R, Bland B H.
Thiopental uncouples hippocampal and cortical synchronized electroencephalographic
activity.
Anesthesiology.
1996;
84
1411-1424
- 20
Steriade M, Contreras D.
Relations between cortical and thalamic events during transition from sleep patterns
to paroxysmal activity.
J Neurosci.
1995;
15
623-642
- 21
McCormick D A, Bal T.
Sleep and arousal: thalamocortical mechanisms.
Annu Rev Neurosci.
1997;
20
185-215
- 22
Detsch O, Vahle-Hinz C, Kochs E, Siemers M, Bromm B.
Isoflurane induces dose-dependent changes of thalamic somatosensory information transfer.
Brain Res.
1999;
829
77-89
- 23
Maquet P, Degueldre C, Delfiore G, Aerts J, Péters J-M, Luxen A, Franck G.
Functional neuroanatomy of human slow wave sleep.
J Neurosci.
1997;
17
2807-2812
- 24
Alkire M T, Haier R J, Barker S J, Shah N K, Wu J C, Kao Y J.
Cerebral metabolism during propofol anesthesia in humans studied with positron emission
tomography.
Anesthesiology.
1995;
82
393-403
- 25
Alkire M T, Haier R J, Shah N K, Anderson C T.
Positron emission tomography study of regional cerebral metabolism in humans during
isoflurane anesthesia.
Anesthesiology.
1997;
86
549-557
- 26
Alkire M T.
Quantitative EEG correlations with brain glucose metabolic rate during anesthesia
in volunteers.
Anesthesiology.
1998;
89
323-333
- 27
Alkire M T, Pomfrett C JD, Haier R J, Gianzero M V, Chan C M, Jacobsen B P, Fallon J H.
Functional brain imaging during anesthesia in humans. Effects of halothane on global
and regional glucose metabolism.
Anesthesiology.
1999;
90
701-709
- 28
Fiset P, Paus T, Daloze T, Plourde G, Meuret P, Bonhomme V, Hajj-Ali N, Backman S B,
Evans A C.
Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission
tomographic study.
J Neurosci.
1999;
19
5506-5513
- 29
Thornton C.
Evoked potentials in anaesthesia.
Eur J Anaesth.
1991;
8
89-107
- 30
Schwender D, Daunderer M, Klasing S, Mulzer S, Finsterer U, Peter K.
Monitoring intraoperative awareness. Vegetative signs, the isolated forearm technique,
the electroencephalogram and auditory evoked potentials.
Anaesthesist.
1996;
45
708-721
- 31
Pöppel E.
A hierarchical model of temporal perception.
Trends Cogn Sci.
1997;
1
56-61
- 32
Schwender D, Faber-Füllig E, Klasing S, Pöppel E, Peter K.
Motor signs of wakefulness during general anaesthesia with propofol, isoflurane and
flunitrazepam/fentanyl and midlantency auditory evoked potentials.
Anaesthesia.
1994;
49
476-484
- 33
Niesert W, Haupts M, Scholz M, Cunitz G.
Quantifizierung der postoperativen Vigilanz mittels evozierter Potentiale.
Anästhesiol Intensivmed Notfallmed Schmerzther.
1999;
34
269-277
- 34
Plourde G, Baribeau J, Bonhomme V.
Ketamine increases the amplitude of the 40-Hz auditory steady-state response in humans.
Br J Anaesth.
1997;
78
524-529
- 35
Peterson D O, Drummond J C, Todd M M.
Effect of halothane, enflurane, isoflurane, and nitrous oxide on somatosensory evoked
potentials in humans.
Anesthesiology.
1986;
65
35-40
- 36
Sebel P S, Erwin C W, Neville W K.
Effects of halothane and enflurane on far and near field somatosensory evoked potentials.
Br J Anaesth.
1987;
59
1492-1496
- 37
Koht A, Schütz W, Schmidt G, Schramm J, Watanabe E.
Effects of etomidate, midazolam, and thiopental on median nerve somatosensory evoked
potentials and the additive effects of fentanyl and nitrous oxide.
Anesth Analg.
1988;
67
441
- 38
McCormick D A.
Neurotransmitter actions in the thalamus and cerebral cortex.
J Clin Neurophysiol.
1992;
9
212-223
- 39
Perry E, Walker M, Grace J, Perry R.
Acetylcholine in mind: a neurotransmitter correlate of consciousness?.
Trends Pharmacol Sci.
1999;
22
273-280
- 40
Angel A.
Central neuronal pathways and the process of anaesthesia.
Br J Anaesth.
1993;
71
148-163
- 41
Gähwiler B H.
Organotypic monolayer cultures of nervous tissue.
J Neurosci Methods.
1981;
4
329-342
- 42
Gähwiler B H, Capogna M, Debanne D, McKinney R A, Thompson S M.
Organotypic slice cultures: a technique has come of age.
Trends Neurosci.
1997;
20
471-477
- 43
Klostermann O, Wahle P.
Patterns of spontaneous activity and morphology of interneuron types in organotypic
cortex and thalamus-cortex cultures.
Neuroscience.
1999;
92
1243-1259
- 44
Gabbott P LA, Somogyi P.
Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area
17) of the cat.
Exp Brain Res.
1986;
61
323-331
- 45
Antkowiak B, Helfrich-Förster C.
Effects of small concentrations of volatile anesthetics on action potential firing
of neocortical neurons in vitro.
Anesthesiology.
1998;
88
1592-1602
- 46
Antkowiak B.
Different actions of general anaesthetics on the firing patterns of neocortical neurons
mediated by the GABAA receptor.
Anesthesiology.
1999;
91
500-511
- 47
Hirota K, Lambert D G.
Ketamine: its mechanism(s) of action and unusual clinical uses.
Br J Anaesth.
1996;
77
441-444
- 48
Detsch O, Kochs E.
Effects of ketamine on central nervous system function.
Anaesthesist.
1997;
46
S20-S29
- 49
Antkowiak B, Hentschke H.
Cellular mechanisms of gamma rhythms in rat neocortical brain slices probed by the
volatile anaesthetic isoflurane.
Neurosci Lett.
1997;
231
87-90
- 50
Jeffereys J GR, Traub R D, Whittington M A.
Neuronal networks for induced “40 Hz” rhythms.
Trends Neurosci.
1996;
19
202-208
- 51
Schwender D, Klasing S, Madler C, Pöppel E, Peter K.
Mid-latency auditory evoked potentials during ketamine anaesthesia in humans.
Br J Anaesth.
1993;
71
629-632
- 52
Bowdle T A, Radant A D, Cowley D S, Kharasch E D, Strassman R J, Roy-Byrne P P.
Psychedelic effects of ketamine in healthy volunteers.
Anesthesiology.
1998;
88
82-88
- 53
Verma A, Moghaddam B.
NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial
delayed alternation performance in rats: modulation by dopamine.
J Neurosci.
1996;
16
373-379
- 54
Patel I M, Chapin J K.
Ketamine effects on somatosensory cortical single neurons and on behavior in rats.
Anesth Analg.
1990;
70
635-644
- 55
Kress H G.
Neuropharmacological mechanisms of ketamine.
Anaesthesist.
1997;
46
S8-S19
- 56
Schubert A, Licina M, Lineberry P J.
The effect of ketamine on human somatosensory evoked potentials and its modification
by nitrous oxide.
Anesthesiology.
1990;
72
33-39
- 57
Kalkman C J, Drummond J C, Patel P M, Sano T, Chesnut R M.
Effects of droperidol, pentobarbital, and ketamine on myogenic transcranial magnetic
motor-evoked responses in humans.
Neurosurgery.
1994;
35
1066-1071
- 58
Kalkamn C J, Drummond J C, Ribberink A A, Patel P M, Sano T, Bickford R G.
Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses
to transcranial electric or magnetic stimulation in humans.
Anesthesiology.
1992;
76
502-509
- 59
Moghaddam B, Adams B, Verma A, Daly D.
Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway
from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with
the prefrontal cortex.
J Neurosci.
1997;
17
2921-2927
- 60
Crosby G, Crane A M, Sokoloff L.
Local changes in cerebral glucose utilization during ketamine anesthesia.
Anesthesiology.
1982;
56
437-443
- 61
Davis D W, Mans A M, Biebuyck J F, Hawkins R A.
The influence of ketamine on regional brain glucose use.
Anesthesiology.
1988;
69
199-205
- 62
Duncan G H, Dreyer D A, McKenna T M, Whitsel B L.
Dose- and time-dependent effects of ketamine on SI neurons with cutaneous receptive
fields.
J Neurophysiol.
1982;
47
677-699
- 63
Armstrong-James M, Welker E, Callahan C A.
The contribution of NMDA and NON-NMDA receptors to fast and slow transmission of sensory
information in the rat SI barrel cortex.
J Neurosci.
1993;
13
2149-2160
- 64
Perouansky M, Yaari Y.
Kinetic properties of NMDA receptor-mediated synaptic currents in rat hippocampal
pyramidal cells versus interneurones.
J Physiol (Lond).
1993;
465
223-244
- 65
Roskies A L.
The binding problem.
Neuron.
1999;
24
7-9
- 66
Goldman-Rakic P S.
Cellular basis of working memory.
Neuron.
1995;
14
447-485
- 67
Flohr H.
An information processing theory of anaesthesia.
Neuropsychologia.
1995;
33
1169-1180
- 68
Flohr H, Glade U, Motzko D.
The role of the NMDA synapse in general anesthesia.
Toxicol Lett.
1998;
100
23-29
- 69
Milan M J.
The induction of pain: An integrated review.
Prog Neurobiol.
1999;
57
1-164
- 70
Rampil I J, King B S.
Volatile anesthetics depress spinal motor neurons.
Anesthesiology.
1996;
85
129-134
- 71
Friedman Y, King B S, Rampil I J.
Nitrous oxide depresses spinal F waves in rats.
Anesthesiology.
1996;
85
135-141
- 72
Zhou H H, Jin T-T, Qin B, Turndorf H.
Suppression of spinal cord motoneuron excitability correlates with surgical immobility
during isoflurane anethesia.
Anesthesiology.
1998;
88
955-961
- 73
King B S, Rampil I J.
Anesthetic depression of spinal motor neurons may contribute to lack of movement in
response to noxious stimuli.
Anesthesiology.
1994;
81
1484-1492
- 74
Zhou H H, Mehta M, Leis A.
Spinal cord motoneuron excitability during isoflurane and nitrous oxide anesthesia.
Anesthesiology.
1997;
86
302-307
- 75
MacIver M B, Tanelian D L.
Volatile anesthetics excite mammalian nociceptor afferents recorded in vitro.
Anesthesiology.
1990;
72
1022-1030
- 76
De Jong R H, Robles R, Corbin R W, Nace R A.
Effect of inhalation anesthetics on monosynaptic and polysynaptic transmission in
the spinal cord.
J Pharmacol Exp Ther.
1968;
162
326-330
- 77
De Jong R H, Robles R, Morikawa K-I.
Actions of halothane and nitrous oxide on dorsal horn neurons (“The spinal gate”).
Anesthesiology.
1969;
31
205-212
- 78
De Jong R H, Robles R, Heavner J E.
Suppression of impulse transmission in the cat's dorsal horn by inhalation anesthetics.
Anesthesiology.
1970;
32
440-445
- 79
Antognini J F, Carstens E.
Increasing isoflurane from 0.9 to 1.1 minimum alveolar concentration minimally affects
dorsal horn cell responses to noxious stimulation.
Anesthesiology.
1999;
90
208-214
- 80
Collins J G, Kendig J J, Mason P.
Anesthetic actions within the spinal cord: contributions to the state of general anesthesia.
Trends Neurosci.
1995;
18
549-553
- 81
Yanagidani T, Ota K, Collins J G.
Complex effects of general anesthesia on sensory processing in the spinal dorsal horn.
Brain Res.
1998;
812
301-304
- 82
Gaumann D M, Mustaki J-P, Tassonyi E.
MAC-awake of isoflurane, enflurane and halothane evaluated by slow and fast alveolar
washout.
Br J Anaesth.
1992;
68
81-84
- 83
Katoh T, Sguro Y, Ikeda T, Kazama T, Ikeda K.
Influence of age on awaking concentrations of sevoflurane and isoflurane.
Anesth Analg.
1993;
76
348-352
- 84
Cousins M J.
Pain: The past, present, and future of anesthesiology? The Rovenstine memorial lecture.
Anesthesiology.
1999;
91
538-551
- 85
Treede R-D, Kenshalo D R, Gracely R H, Jones A KP.
The cortical representation of pain.
Pain.
1999;
79
105-111
- 86
Woolf C J, Chong M-S.
Preemptive analgesia - Treating postoperative pain by preventing the establishment
of central sensitization.
Anesth Analg.
1993;
77
362-379
- 87
Woolf C J, Salter M W.
Neuronal plasticity: increasing the gain in pain.
Science.
2000;
288
1765-1768
- 88
Kieffer B L.
Opioids: first lessons from knockout mice.
Trends Pharmacol Sci.
1999;
20
19-26
- 89
Bovill J G.
Mechanisms of actions of opioids and non-steroidal anti-inflammatory drugs.
Eur J Anaesth.
1997;
14
9-15
- 90
Pert A, Yaksh T.
Sites of morphine induced analgesia in the primate brain: relation to pain pathways.
Brain Res.
1974;
80
135-140
- 91
Tseng L-F, Wei E T, Loh H H, Li C H.
β-endorphin: central sites of analgesia, catalepsy and body temperature changes in
rats.
J Pharmacol Exp Ter.
1980;
214
328-332
- 92
Yaksh T L, Rudy T A.
Studies on the direct spinal action of narcotics in the production of analgesia in
the rat.
J Pharmacol Exp Ther.
1977;
202
411-428
- 93
Yaksh T L, Yeung J C, Rudy T A.
Systematic examination in the rat of brain sites sensitive to the direct application
of morphine: observation of differential effects within the periaqueductal gray.
Brain Res.
1976;
114
83-103
- 94
Messlinger K.
What is a nociceptor?.
Anaesthesist.
1997;
46
142-153
- 95
Stamford J A.
Descending control of pain.
Br J Anaesth.
1995;
75
217-227
- 96
Koyama N, Hanai F, Yokota T.
Does intravenous administration of GABAA receptor antagonists induce both descending antinociception and touch-evoked allodynia?.
Pain.
1998;
76
327-336
- 97
Behbehani M M, Jiang M, Chandler S D, Ennis M.
The effect of GABA and its antagonists on midbrain periaqueductal gray neurons in
the rat.
Pain.
1990;
40
195-204
- 98
Vaughan C W, Ingram S L, Connor M A, Christie M J.
How opioids inhibit GABA-mediated neurotransmission.
Nature.
1997;
390
611-614
- 99
Vaughan C W, Christie M J.
Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal
grey in vitro.
J Physiol (Lond).
1997;
498
463-472
- 100
Gear R W, Miaskowski C, Heller P H, Paul S M, Gordon N C, Levine J D.
Benzodiazepine mediated antagonism of opioid analgesia.
Pain.
1997;
71
25-29
- 101
Reddy S, Patt R B.
The benzodiazepines as adjuvant analgesics.
J Pain Symptom Manag.
1994;
9
510-514
- 102
Rosland J H, Hole K.
1,4-benzodiazepines antagonize opiate-induced antinociception in mice.
Anesth Analg.
1990;
71
242-248
- 103
Goto T, Matota J JA, Crosby G.
Pentobarbitone, but not propofol produces pre-emptive analgesia in the rat formalin
model.
Br J Anaesth.
1994;
72
662-667
- 104
Goto T, Marota J JA, Crosby G.
Nitrous oxide induces preemptive analgesia in the rat that is antagonized by halothane.
Anesthesiology.
1994;
80
409-416
- 105
Goto T, Marota J JA, Crosby G.
Volatile anaesthetics antagonize nitrous oxide and morphine-induced analgesia in the
rat.
Br J Anaesth.
1996;
76
702-706
- 106
Gain E A, Paletz S G.
An attempt to correlate the clinical signs of Fluothane anesthesia with the electroencephalographic
levels.
Canad Anesth Soc J.
1957;
4
289-294
- 107 Jenkins L C.
Pharmacological effects of general anesthetics on the central nervous system. In: General anesthesia and the central nervous system. Baltimore; Williams & Wilkins
1969: 185-291
- 108
Homi J, Konchigeri H N, Eckenhoff J E, Linde H W.
A new anesthetic agent - Forane: preliminary observations in man.
Anesth Analg.
1972;
51
439-447
- 109
Madler C, Keller I, Schwender D, Pöppel E.
Sensory information processing during general anaesthetics: effect of isoflurane on
auditory evoked neuronal oscillations.
Br J Anaesth.
1991;
66
81-87
Dr. B. Antkowiak
Max-Planck-Institut für biologische Kybernetik
Spemannstraße 38
72076 Tübingen
Email: bernd.antkowiak@tuebingen.mpg.de